Quantum dots implemented in semiconducting nanowires offer control of their electronic configuration down to the single electron. This is possible thanks to their tightly confined electronic states that can be tuned by external gate voltages. We study the integration of nanowire quantum dots in superconducting planar resonators for their coupling and manipulation by microwave electromagnetic fields.

Relevant Publications

Semiconducting Nano-Devices

  • L. Peri, D. Prete, V. Demontis, V. Zannier, F. Rossi, L. Sorba, F. Beltram and F. Rossella, Giant reduction of thermal conductivity and enhancement of thermoelectric performance in twinning superlattice InAsSb nanowires Nano Energy 103, 107700 (2022). https://doi.org/10.1016/j.nanoen.2022.107700
  • A. E. Kaplan, V. Vitali, V. Demontis, F. Rossella, A. Fontana, S. Cornia, P. Petropoulos, V. Bellani, C. Lacava and I. Cristiani, Polarization Control in Integrated Silicon Waveguides Using Semiconductor Nanowires Nanomaterials 12, 2438 (2022). https://doi.org/10.3390/nano12142438
  • L. Zagaglia, V. Demontis, F. Rossella and F. Floris, Particle swarm optimization of GaAs-AlGaAS nanowire photonic crystals as two-dimensional diffraction gratings for light trapping Nano Express 3, 021001 (2022). https://iopscience.iop.org/article/10.1088/2632-959X/ac61ec
  • M. Gandolfi, S. Peli, M. D. S. Danesi, C. Giannetti, I. Alessandri, V. Zannier, V. Demontis, M. Rocci, F. Beltram, L. Sorba, S. Roddaro, F. Rossella, F. Banfi, Ultrafast Photoacoustic Nanometrology of InAs Nanowires Mechanical Properties J. Phys. Chem. C 126, 6361 (2022). https://doi.org/10.1021/acs.jpcc.2c01060
  • R. Rouxel, M. D. P. Maioli, N. Lascoux, F. Vialla, F. Rossella, F. Banfi, F. Vallée, N. Del Fatti, A. Crut, Electron and Lattice Heating Contributions to the Transient Optical Response of a Single Plasmonic Nano-Object, J. Phys. Chem. C 125, 23275 (2021). https://doi.org/10.1021/acs.jpcc.1c0662
  • L. Zagaglia, V. Demontis, F. Rossella and F. Floris, Semiconductor nanowire arrays for optical sensing: A numerical insight on the impact of array periodicity and density, Nanotechnology 32, 335502 (2021). https://iopscience.iop.org/article/10.1088/1361-6528/abff8b/meta
  • D. Prete, E. Dimaggio, V. Demontis, V. Zannier, M. J. Rodriguez Douton, L. Guazzelli, F. Beltram, L. Sorba, G. Pennelli and F. Rossella, Electrostatic control of the thermoelectric figure of merit in ion-gated nanotransistors, Adv. Funct. Mat. 31, 2104175 (2021). https://doi.org/10.1002/adfm.202170275 – See also Cover Image.
  • V. Demontis, V. Zannier, L. Sorba and F. Rossella, Surface nano-patterning for the bottom-up growth of iii-v semiconductor nanowire ordered arrays, Nanomaterials 11, 2079 (2021). https://www.mdpi.com/2079-4991/11/8/2079
  • D. Prete, V. Demontis, V. Zannier, M. J. Rodriguez-Douton, L. Guazzelli, F. Beltram, L. Sorba and F. Rossella, Impact of electrostatic doping on carrier concentration and mobility in InAs nanowires, Nanotechnology 32, 145204 (2021). https://iopscience.iop.org/article/10.1088/1361-6528/abd659
  • A. Ghirri, S. Cornia and M. Affronte, Microwave Photon Detectors Based on Semiconducting Double Quantum Dots – Sensors 20, 4010 (2020). https://doi.org/10.3390/s20144010
  • S. Salimian, O. Arif, V. Zannier, D. Ercolani, F. Rossi, Z. S. Momtaz, F. Beltram, S. Roddaro, F. Rossella and L. Sorba, Electrical probing of charge carrier separation in core-dualshell InAs/InP/GaAsSb nanowires, Nano Research 13, 1065 (2020). https://doi.org/10.1007/s12274-020-2745-5
  • S. Cornia, F. Rossella, V. Demontis, V. Zannier, F. Beltram, L. Sorba, M. Affronte and A. Ghirri, Microwave-Assisted Tunneling in Hard-Wall InAs/InP Nanowire Quantum Dots – Scip. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-56053-2
  • J. Lieb, V. Demontis, D. Prete, D. Ercolani, V. Zannier, L. Sorba, S. Ono, F. Beltram, B. Sacepe and F. Rossella, Ionic liquid gating of InAs nanowire-based field effect transistors, Adv. Funct. Mater. 29, 1804378 (2019). https://doi.org/10.1002/adfm.201804378 – See also Inside Cover Image.
  • F. Rossella, V. Piazza, M. Rocci, D. Ercolani, L. Sorba, F. Beltram and S. Roddaro, GHz electroluminescence modulation in nanoscale subwavelength emitters, Nano Lett. 16, 5521 (2016). https://doi.org/10.1021/acs.nanolett.6b02020
  • S. Yazji, E. Hoffman, D. Ercolani, F. Rossella, A. Pitanti, A. Cavalli, S. Roddaro, G. Abstreiter, L. Sorba, and I. Zardo, Complete thermoelectric benchmarking of individual InSb nanowires by combined micro-Raman and electric transport analysis. Nano Research 8, 4048 (2015). https://doi.org/10.1007/s12274-015-0906-8

Semiconducting Quantum-Dots

  • Z. S. Momtaz, S. Servino, V. Demontis, V. Zannier, D. Ercolani, F. Rossi, F. Rossella, L. Sorba, F. Beltram and S. Roddaro, Orbital Tuning of Tunnel Coupling in InAs/InP Heterostructured Nanowires, Nano. Lett. 20, 1693 (2020). https://doi.org/10.1021/acs.nanolett.9b04850
  • S. Wu, K. Peng, S. Battiato, V. Zannier, A. Bertoni, G. Goldoni, X. Xie, J. Yang, S. Xiao, C. Qian, F. Song, S. Sun, J. Dang, Y. Yu, F. Beltram, L. Sorba, A. Li, B.-b. Li, F. Rossella and X. Xu, Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots, Nano Res. 12, 2842 (2019). https://doi.org/10.1007/s12274-019-2522-5
  • D. Prete, P. Erdman, V. Demontis, V. Zannier, D. Ercolani, L. Sorba, F. Rossella, F. Taddei and S. Roddaro, Thermoelectric response at high temperature in nanowire quantum dots, Nano Lett. 19, 3033 (2019). https://doi.org/10.1021/acs.nanolett.9b00276
  • F. Rossella, A. Bertoni, D. Ercolani, M.Rontani, L. Sorba, F. Beltram and S. Roddaro, Nanoscale spin rectifier controlled by the Stark effect. Nature Nanotechnology 9, 997 (2014). https://doi.org/10.1038/nnano.2014.251

Related Projects


Quantum Dots – Nanowires – Semiconductors – Microwaves – Resonators